
523session 11: shape grammars - eCAADe 23 |

Thoughts on a Designer-friendly Shape Grammar
Interpreter

Andrew I-kang Li
The Chinese University of Hong Kong, China
http://www.arch.cuhk.edu.hk/servera/staff1/andrew/

Abstract. Discussions of shape grammar interpreters overlook a fundamental is-
sue: the model of the designer’s work. Such a model would provide guidance for
developing an interpreter with an appropriate interface.
In this paper, I fi rst propose a model in which the designer’s work is to create and
test generative specifi cations of languages of designs. I call this model designer-
centered generative design. Then, I examine the characteristics of shape grammar
and how they support or impede this model of work. Finally, I discuss the implica-
tions for the design of an appropriate shape grammar interpreter. These provide
guidelines for implementing such an interpreter for testing.

Keywords. Shape grammar; interpreter.

Introduction

A number of interpreters have been developed
to make shape grammars easier and more appeal-
ing for designers to use1. However, these have not
been as successful as one might have expected,
and it is recognized that more work needs to be
done.

It is often suggested that what needs the work
is the user interface. For example, Knight (1999)
writes that:

More efforts have gone to computational
problems than to interface ones. Implementations
of simple, restricted grammars that require only
graphic, nonsymbolic, nonnumerical input are
needed.

Similarly, Chase (2002, 162) writes:

1 For a recent list see Chau et al. (2004).

Further research on interactions in grammar
systems could bridge this gap between CAD sys-
tem and grammar-based interfaces.

This view is correct as far as it goes. How-
ever, it overlooks a more fundamental issue: the
designer’s model of work. We must understand
this before we can understand the interface of a
system. That is, usefulness precedes usability. As
Mirel (2004, 32) puts it:

[T]he idea for usable systems is to be “use-
ful” by supporting the right model of people’s work
and “easy to use” by disclosing an application’s
logic and operations.

In this paper, I first propose a model in which
the designer’s work is to create and test generative
specifications of languages of designs. I call this

524 | eCAADe 23 - session 11: shape grammars

model designer-centered generative design.
Then, I examine the characteristics of shape

grammar and how they support or impede this
model of work.

Finally, I discuss the implications for the de-
sign of an appropriate shape grammar interpreter.
These provide guidelines for implementing such
an interpreter for testing.

Designer-centered generative design

Description
In designer-centered generative design, there

are a designer and two entities, both of which are
acted upon by the designer:

• A generative specification that defines a
language of designs (the specified language). This
is manipulated by the designer.

• A language of designs that satisfy some
criteria (the target language). The criteria are de-
termined by the designer.

The designer’s goal is to converge the speci-
fied language and the target language. The formal-
ism used to characterize the specification is imma-
terial; it could be a shape grammar, an L-system, or
a programming language.

The designer’s work consists of two tasks: cre-
ating the specification, and evaluating whether the
specified designs are in the target language. These
tasks are present in both analysis and synthesis.

In analysis, the designer begins with a finite
sample of designs that are considered to belong to
the target language. Her goal is to create a speci-
fication that defines all and only the designs in the
target language. To do this, she carries out an it-
erative process of revising the specification and
evaluating whether the specified designs are in the
target language.

In synthesis, the designer may begin with cri-
teria for the target language2. As in analysis, her
goal is to create a specification that defines all
and only the designs in the target language. And,
again, she revises the specification and evaluates
the specified designs iteratively.

One key feature here is that the designer revis-
es the specification repeatedly. That is, although
her focus is a specification and not an object, she
is engaged in design. And, as is well known, de-
sign is unpredictable. This leads inevitably to the
conclusion that the designer must not be restrict-
ed in her manipulation of the specification: emer-
gence is essential. We will have more to say on
this below.

It also follows that restrictions on the specifica-
tion are restrictions on the specified language and
may prevent it from converging with the target lan-
guage. Creating specifications under such restric-
tions falls outside the proposed model.

A typology of generative design
As mentioned above, in this model, both tasks

– creating the specification, and evaluating the
specified designs – are performed by the designer.
Hence the name designer-centered generative de-
sign.

However, either of these tasks could be per-
formed other than by the designer alone, by a hu-
man or a nonhuman, with or without the designer.
These suggest a context within which we can place
designer-centered generative design (see table
1).

Consider the first task, creating the specifica-
tion. It is easy to imagine that a first version is cre-
ated by someone else. It could be a teacher, for an
exercise3; an analyst, studying a style; or even the
designer herself, at some earlier time. The design-

2 In practice, the designer often begins with few or no criteria for the target language; determining these is then part of the design process
(Lawson 2004). In addition, she may not need all and only the designs in the target language; she may be satisfi cing, in which case only
a few designs, or even one design, may suffi ce. Both these cases are subsumed within the model.
3 This was the premise for Li’s (2002) Yingzao fashi interpreter.

525session 11: shape grammars - eCAADe 23 |

er takes this first version and reworks it, creating a
new specification. This is design, not from scratch,
but from the known. It is equally easy to imagine an
entire specification being created or revised auto-
matically, as in genetic algorithms.

As for the second task, evaluating the designs,
this is usually done by the designer4. But she
might also entrust the task to an external author-
ity, such as a connoisseur, a fitness function, or an
informant or “native stylist” (such as Alvaro Siza in
Duarte’s (2001) study of Siza’s Malagueira hous-
ing). If the authority is considered objective, then
we have the scientific method.

The extreme case is that in which both creation
and evaluation are both done automatically, such
as simulated annealing (Shea and Cagan 1997).
In this case, no human is directly involved in the
design process.

No doubt other scenarios can be fit into this
framework.

Shape grammars and designer-centered gen-
erative design

Shape grammars have three important charac-
teristics which support designer-centered genera-
tive design.

First, they are themselves generative specifica-
tions. They can be freely manipulated by design-
ers (or artificially) and support the scenarios in the
typology.

Second, they support emergence. This, as

4 Which is why grammatical analysis is inherently subjective (Li 2004).

we have seen, is crucial to creating specifications
freely, as opposed to merely implementing them.

Third, they are graphic. Designers work graph-
ically, so they are likely to find shape grammars
more congenial than, say, L-systems.

However, shape grammars also have a charac-
teristic that tends to impede the proposed model
of work: the transformation articulated in a single
shape grammar rule is often smaller than design-
ers want to consider. Put another way, a designer
often thinks about operations that are too complex
to be expressed as a single rule. Instead, they are
encoded as a deterministic sequence of rules (Li
2001). These are trees when the designer is think-
ing forest.

For example, the designer may want to put an
opening in a wall. For her, this is a single decision,
but a grammar requires many steps to execute that
single decision, steps that will not likely interest
her. Liew (2004) has investigated this issue, which
is simply another aspect of usefulness versus us-
ability.

Implications for a designer-friendly
shape grammar interpreter

We have considered a model of work and a
formalism. Now we consider how to mediate be-
tween the two, which is the task of the interpreter.
In this case, a designer-friendly shape grammar in-

Table 1. Typology of genera-
tive design, suggested by dif-
ferent ways of creating the
specifi cation and of evaluat-
ing the designs.

526 | eCAADe 23 - session 11: shape grammars

terpreter is simply a tool for both making and test-
ing shape grammars. Thus, the guiding principle
is that the interpreter must manifest this model of
work to the designer. From this we can derive more
concrete desiderata. We proceed by considering
the designer’s lower-level tasks.

Manipulating rules
The designer’s first such task is to manipu-

late rules. These must be freely variable; it fol-
lows that emergence must be supported. Tapia’s
(1999) GEdit is notable in allowing such freedom
in creating rules and in supporting emergence.
However, revising rules is impossible; the designer
must create new ones. In contrast, McGill’s (2002)
Shaper2D allows only a narrow range of rules,
but within that range allows the designer to revise
them freely.

A second desideratum is direct manipulation
of rules (and, by extension, shapes and basic ele-
ments). This would exploit the graphic immediacy
of shape grammars. A good example is McGill’s
(2002) Shaper2D, which allows the designer to
interact directly with the rules; this is reinforced
by instantaneous feedback. Another example of
direct manipulation of graphic rules is Stagecast
Creator™ (previously known as KidSim and Co-
coa) (Smith et al. 1996), a children’s simulation
program that uses visual programming.

A third desideratum is the ability to create
subroutines. Liew’s (2004) implementations are
compelling arguments for this ability. There have
been no other implementations in shape grammar,
but Creator™ (Smith et al. 1996) is an impressive
example of direct manipulation. This is a solvable
problem.

One might ask about technical capabilities,
such as labels, weights, descriptions, and param-
eterization. Insofar as omitting them would not
compromise the model of work, they are not cru-
cial. Of course, implementing them would make an
interpreter more powerful, but the model of work
would be the same.

Manipulating grammars
Designer manipulates not only rules, but also

grammars. The same logic applies, that designers
must be able to manipulate grammars directly and
freely. They must be able to organize and annotate
the rules as they see fit. They must also be able
to store and recall grammars. This last capability
will make it possible to implement design from
the known, as discussed above. It would also al-
low grammars to be exported, subjected to artifi-
cial evolution, and re-imported. At the very least,
it would enable the designer to spread her work
over several sessions. Again, Creator™ (Smith et
al. 1996) is a good example.

Evaluating designs
At this level, there are no implications for how

an interpreter should handle evaluation; it is a mat-
ter purely for the designer. At the same time, a par-
ticular method of evaluation may require particular
treatment. For instance, if the designer wants to
evaluate real objects, and not screen images, then
the interpreter will have to export the designs in
a format appropriate for digital manufacturing, as
Wang and Duarte (2002) do.

Producing designs
According to the proposed model, the designer

does not produce the designs that she evaluates.
Since she is interested in all and only the target
designs, then she needs to see all the specified
designs. And the best way to ensure complete-
ness, especially when emergence is supported, is
to produce designs automatically. Tapia’s (1999)
GEdit implemented such an automatic production
mechanism.

But this approach could also overwhelm the
designer, who might well to have some control
over the generation of designs. This could take
many forms. For instance, she could choose in-
dividual derivations and generate single designs.
Or she could have the interpreter generate all the
designs below a single node on the derivation tree.

527session 11: shape grammars - eCAADe 23 |

Or she could have the interpreter generate designs
randomly. In addition, the designer may not need
to produce all the specified designs. If she is sat-
isficing, she may be content to produce only a few
designs and choose among those. Chase’s (2002)
discussion is relevant here.

An additional form of control is navigating
through the design space. This could be made
possible with a dynamic and interactive derivation
tree.

There is another possible goal for the interpret-
er, a goal that is secondary to but certainly con-
sistent with the model. That is to help designers
understand how shape grammars work. This is the
primary goal of McGill’s (2002) Shaper2D, which,
as has already been discussed, is indeed easy to
understand. Li’s (2002) Yingzao fashi section inter-
preter also tries to be transparent to the user.

Discussion

We have now identified some features that
should be implemented in an interpreter that sup-
ports designers in both making and testing shape
grammars. Whether these features are useful
– and indeed whether the model they are based on
is useful – can be determined only by making and
testing implementations. This includes expanding
the scope of evaluation to include both virtual ob-
jects and physical objects produced digitally.

But even without being implemented, our
model, which we might call grammatical design,
provides some helpful insights into the relation be-
tween grammars and design.

One issue is whether grammars are useful in
designing from scratch (or perhaps “real” design).
Here we may use Smithers’s (2002, 7) description
of design as a process of “arriving at a kind of solu-
tion without starting with a problem.”

One view is that grammars are not useful in
designing from scratch. And certainly our model

is less convincing when the designer lacks crite-
ria for the target language. The other view is that
grammars are useful, because they can capture a
designer’s moves after the fact.

One could say that both views are wrong. The
first view ignores the fact that design is almost
never totally from scratch. It underrates the neces-
sity of knowledge and experience (Lawson 2004)
and their presence in the design process. And
the second view conflates retrospection and ac-
tion. But both views can also be right. Our model
is consistent with both the first view (grammatical
design from scratch may not be convincing) and
the second (grammatical design from the known
is credible).

Our model shows how to operationalize design
from precedent: some design knowledge can be
embedded in analytical grammars, recalled, and
reworked to specify new languages of designs5.

Certainly, analysis has so far proven to be a
success of shape grammar. Our model suggests
that building on this analytical strength could yet
benefit synthesis.

One could imagine education along old lines:
students analyze old works and try to produce
new examples. This may be a disagreeable idea
to some, but automating appropriate parts of the
process and making many styles available might
make it appealing. At least it would be one more
tool that could be used.

References

Chase, S. C. 2002: A model for user interaction in
grammar-based design systems, in Automation
in construction 11, pp. 161–172.

Chau, H. H., X. Chen, A. McKay, and A. de Pen-
nington: 2004, Evaluation of a 3D shape gram-
mar implementation, in J. S. Gero (ed.), Design
computing and cognition ’04, Kluwer, Dordrecht,
pp. 357–376.

5 Knight (1994) has discussed the technical aspects of such a scenario.

528 | eCAADe 23 - session 11: shape grammars

Duarte, J. P.: 2001, Customizing mass housing:
a discursive grammar for Siza’s Malagueira
houses, PhD dissertation, Department of Archi-
tecture, Massachusetts Institute of Technology,
Cambridge, Mass.

Knight, T. W.: 1994, Transformations in design: a
formal approach to stylistic change and inno-
vation in the visual arts, Cambridge University
Press, Cambridge, England.

Knight, T. W.: 1999, Shape grammars in education
and practice: history and prospects, in Interna-
tional journal of design computing 2 (www.arch.
usyd.edu.au/kcdc/journal/vol2/knight/index.
html).

Lawson, B.: 2004, What designers know, Architec-
tural Press, Oxford.

Li, A. I.: 2001, A shape grammar for teaching the
architectural style of the Yingzao fashi, PhD
dissertation, Department of Architecture, Mas-
sachusetts Institute of Technology, Cambridge,
Mass.

Li, A. I.: 2002, A prototype interactive simulated
shape grammar, in Krzysztof Koszewski and
Stefan Wrona (eds), Proceedings of the 20th
conference on education in computer aided
architectural design in Europe, Education in
Computer Aided Architectural Design in Europe,
Warsaw, pp. 314–321.

Li, A. I.: 2004, Styles, grammars, authors, and us-
ers, in J. S. Gero (ed.), Design computing and
cognition ’04, Kluwer, Dordrecht, pp. 197–215.

Liew, H.: 2004, SGML: a meta-language for shape
grammars, PhD dissertation, Department of Ar-
chitecture, Massachusetts Institute of Technol-
ogy, Cambridge, Mass.

McGill, M. C.: 2002, Shaper2D: visual software
for learning shape grammars, in Krzysztof Ko-
szewski and Stefan Wrona, Proceedings of the
20th conference on education in computer aid-
ed architectural design in Europe, Education in
Computer Aided Architectural Design in Europe,
Warsaw, pp. 148–151.

Mirel, B.: 2004, Interaction design for complex

problem solving: developing useful and usable
software, Morgan Kaufmann, San Francisco.

Shea, K., and J. Cagan: 1997, Innovative dome
design: applying geodesic patterns with shape
annealing, in Artificial intelligence for engineer-
ing design, analysis and manufacturing 11, pp.
379–394.

Smith, D. C., A. Cypher, and K. Schmucker: 1996,
Making programming easier for children, in In-
teractions, ACM 3 (5), pp. 58–67.

Smithers, T.: 2002, Synthesis in designing, in J. S.
Gero (ed.), Artificial intelligence in design ’02,
Kluwer, Dordrecht, pp. 3–24.

Tapia, M.: 1999, A visual implementation of a shape
grammar system, in Environment and planning
B: planning and design 26, pp. 59–73.

Wang, Y., and J. P. Duarte: 2002, Automatic genera-
tion and fabrication of designs, in Automation in
construction 11, pp. 291–302.

